
Summary of the OPENSPLICEDDS Tutorial

Marc Paterno

Fermilab Computing Division
CET group

JDEM SOC Meeting
March 10, 2009

M. Paterno (Fermilab) Summary of the OPENSPLICEDDS Tutorial 1 / 9



Purpose and scope

Remind everyone of the purpose of a data distribution system
(DDS).
Report on the highlights of the OPENSPLICEDDS tutorial, offered
by PrismTech (the company that provides OPENSPLICEDDS), and
attended by a FNAL colleague and me (and about 10 others).

M. Paterno (Fermilab) Summary of the OPENSPLICEDDS Tutorial 2 / 9



What is OPENSPLICEDDS?

OPENSPLICEDDS is
a publish/subscribe system,
that implements an Object Management Group (OMG) standard
for DDS,
will “soon” (4–6 weeks, as of 5 March) be open-source software,
and
has a number of “extra value” features, only available in the
commercial versions.

PrismTech1, the company that provides OPENSPLICEDDS, say they
are migrating their business model toward the “MySQL model”; by this
they mean that they’ll give away the basic product, and sell both
support and “enhanced functionality”.

1http://www.prismtechnologies.com
M. Paterno (Fermilab) Summary of the OPENSPLICEDDS Tutorial 3 / 9

http://www.prismtechnologies.com


What is “standard”

The OMG has standardized
the language for defining the data types that are published and
subscribed to (OMG IDL, the same as is used in CORBA), and for
associating names with those types,
the API for publishing instances of those named types,
the API for subscribing to named types, or instances of named
types,
the wire protocol used to communicate the data (so that DDS
solutions from different vendors can inter-operate).

OPENSPLICEDDS implements most of the things that the OMG
standardized (the major missing feature is transactions); they also add
some things beyond what the standard requires, such as a “more
efficient wire protocol”. There is no standardization for security;
OPENSPLICEDDS has an extension that encrypts the data on the wire.

M. Paterno (Fermilab) Summary of the OPENSPLICEDDS Tutorial 4 / 9



A useful “mental model” for DDS

One can think of a topic as a database table.
One can think of an instance of a topic as a row in the database
table.
The DDS system makes the appropriate “data tables” available
over the network.
writers create or modify instances (inserting or updating rows).
readers are notified when a row changes, so they can (re-)read
the row.
EXCEPT: DDS can keep a history of “samples” for instances,
which can be useful.

M. Paterno (Fermilab) Summary of the OPENSPLICEDDS Tutorial 5 / 9



Supported languages and platforms

OPENSPLICEDDS supports, in their open source version,
C++, Java and C programming languages, and
Linux and Windows operating systems.

At least one of their customers is working adding support for Python.
They support other operating systems, but only in their commercial
versions.
There is currently no support for MacOS.

M. Paterno (Fermilab) Summary of the OPENSPLICEDDS Tutorial 6 / 9



Personal first impressions

The presenter of the tutorial was one of the original authors, and
was extremely knowledgeable. If this is the caliber of their
“support people”, their support will be excellent.
OPENSPLICEDDS provides many “knobs” to tweak in order to
optimize system performance.
Some of these knobs have to do with organizing and controlling
use of network resources, e.g., distributing specific topics only to
specific multicast addresses, and using domains to partition the
physical network into logical segments. It is not clear how, or even
if, such things might inter-operate with any “grid technologies”; if
the SOC controls its own hardware (rather than relying on shared
resources) this may not matter.
Many of these knobs are in the form of quality of service
specifications. Several hours of the tutorial were spent highlighting
(!) the ones that are standardized.

M. Paterno (Fermilab) Summary of the OPENSPLICEDDS Tutorial 7 / 9



The language APIs are strongly influenced by their OMG IDL
specification. This means all APIs are written to a “common
subset” of features in the languages supported by OMG IDL.

No default values in functions, and no function overloading;
explicitly named different functions.
No exceptions; functions return error codes, manual checking is
necessary.
No constructors; objects are made by factories.
No covariant return types—explicit casts are needed.
No use of C++ standard library, in C++ binding.

If using this from C++, I’d want to wrap the necessary parts of their
API in some modern C++.
Their Java API involves lots of repetitious boilerplate code: they
offer a commercial tool (Eclipse plug-in) that automates much of
this generation.

M. Paterno (Fermilab) Summary of the OPENSPLICEDDS Tutorial 8 / 9



Conclusion

Our previously-presented plan calls for a 3-month exploration; this
still seems reasonable.
This plan concentrated on measuring performance in a variety of
ways. We now know enough about the system to have a good
idea of where we want to stress it, and on what performance
characteristics we should concentrate.
My first impression is guardedly optimistic. The product seemed
quite mature and full-featured, and worth the time that will be
invested in exploring it.

M. Paterno (Fermilab) Summary of the OPENSPLICEDDS Tutorial 9 / 9


